

Protótipo de IA para Redução da Evasão Escolar

Desafio ED_TECH Senac-GO

Aldrei Marucci Veiga e Dieggo Manuel - 1ª Turma Técnico em IA

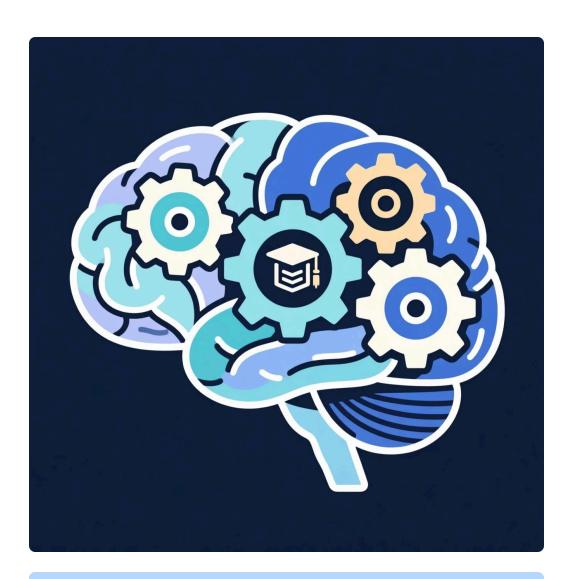
Agosto 2025

CONHEÇA O DESAFIO

Contexto e Foco da Solução

O desafio proposto pelo gerente Gabriel Schimchak visa a criação de um protótipo com Inteligência Artificial para solucionar um problema educacional premente.

Nossa escolha foi a evasão escolar, um problema transversal que afeta todos os níveis de ensino no Brasil.



Por que evasão escolar?

É um fenômeno complexo com impactos sociais e econômicos profundos, que exige soluções inovadoras e assertivas.

A REALIDADE POR TRÁS DOS NÚMEROS

A História de Lucas

Lucas, 16 anos, morador do interior de Goiás, representa milhões de jovens. Seus pais não concluíram o ensino médio, e ele enfrenta desafios diários:

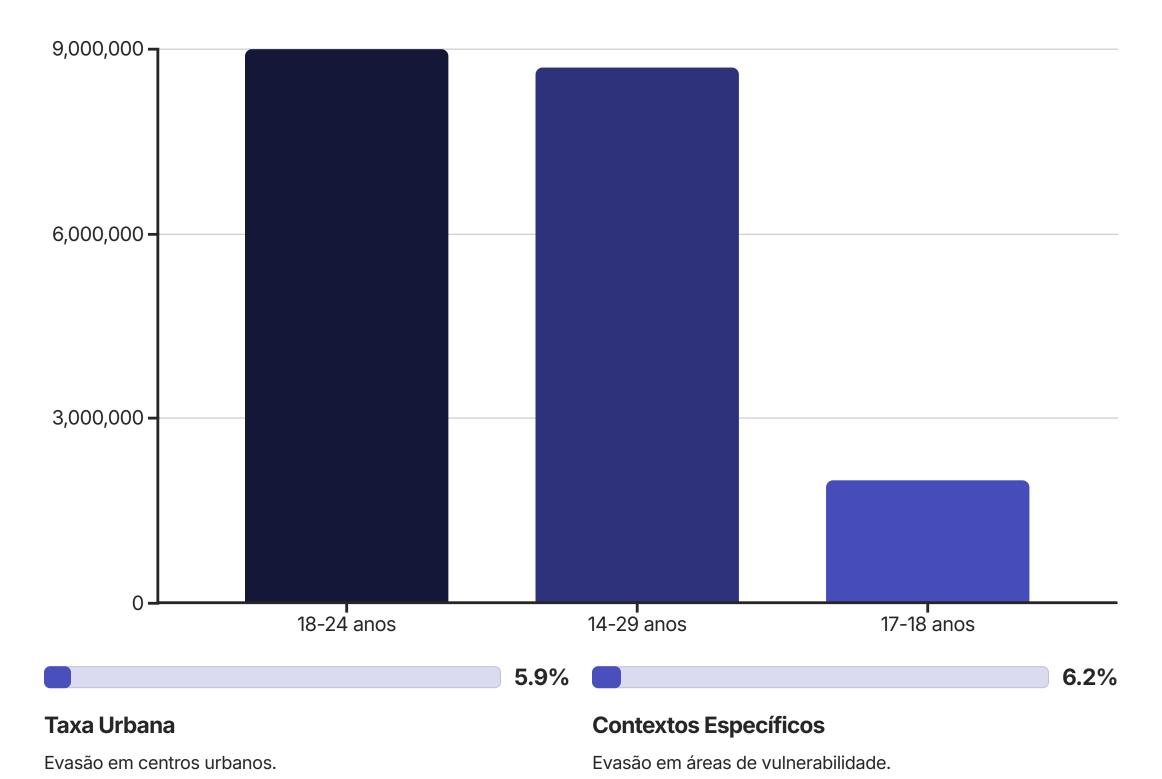
- Dificuldades financeiras
- Falta de apoio familiar e escolar
- Ambiente escolar desmotivador
- Escassez de recursos didáticos
- Transporte escolar irregular

"Quero aprender, mas as dificuldades são muitas..."

Lucas é um símbolo do potencial sufocado pelas circunstâncias, cuja história buscamos reverter com a IA.

A URGÊNCIA DO PROBLEMA

Dados Estatísticos Alarmantes



Dados do IBGE/PNADC 2023 revelam que 9 milhões de jovens (18-24 anos) abandonaram a escola antes de concluir o ensino médio. Em 2024, são 8,7 milhões de jovens (14-29 anos) sem essa formação. A evasão se intensifica aos 16 anos, atingindo 20% entre 17-18 anos.

COMPREENDENDO OS MOTIVOS

Principais Causas da Evasão Escolar

Necessidade de Trabalhar

Cerca de **30**% dos casos são impulsionados pela pressão econômica.

Falta de Interesse

Aproximadamente **25%** dos estudantes desistem por desmotivação.

Outros Fatores

O restante (~45%) abrange questões socioeconômicas diversas, problemas familiares e ambiente escolar.

A evasão é um fenômeno multifacetado, com raízes em fatores econômicos, sociais e pedagógicos. Identificar e endereçar essas causas é crucial para desenvolver intervenções eficazes.

BASES LEGAIS E PROGRAMAS EXISTENTES

O Marco Legal da Educação em Goiás

Legislação Chave

- Projeto de Lei Estadual GO nº 14915/24: "Política Estadual Aluno Presente", focando na garantia da permanência do estudante.
- Plano Estadual de Educação GO (2015-2025): Lei nº 18.969/2015, estabelecendo diretrizes e metas para a educação.

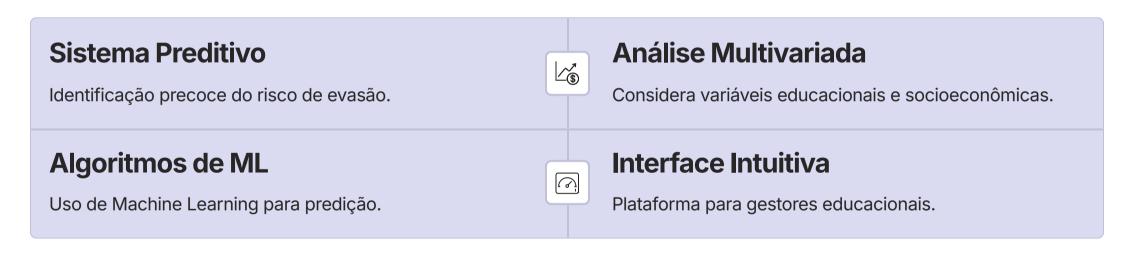
A necessidade de identificar e antecipar momentos de evasão é um pilar dessas leis.

Iniciativas Complementares

- Selo "Escola que Cuida": Reconhece e incentiva boas práticas escolares na proteção de crianças e adolescentes.
- Programa Jovem do Futuro: Foca em apoiar estudantes para garantir a conclusão de sua trajetória educacional.

A INOVAÇÃO EM AÇÃO

Nossa Solução: O Protótipo de IA



Nosso protótipo utiliza inteligência artificial para antecipar os sinais de que um estudante pode abandonar os estudos, permitindo intervenções proativas e personalizadas.

COMO CONSTRUÍMOS

Fluxo do Protótipo de IA

01

Análise Exploratória de Dados

Limpeza e preparação de dados educacionais, identificando padrões e correlações.

03

Modelos de Classificação e Regressão

Aplicação de algoritmos avançados para prever riscos e categorizar perfis de estudantes.

02

Implementação em Google Colab

Desenvolvimento e treinamento dos modelos em um ambiente de nuvem acessível e escalável.

04

Validação Estatística

Teste e ajuste dos modelos para garantir precisão e confiabilidade nos resultados preditivos.

A metodologia de desenvolvimento seguiu um rigoroso processo de ciência de dados, garantindo a robustez e eficácia do protótipo.

Resultados e Visualizações

Planilha gerada aleatoriamente

1	A		В	C	D	E	F		G	Н		1	J	K		L
1	Aluno_I	D Data_N	lascimento And	_Escolar	Periodo	Materia	Frequencia_Pe	riodo Not	a_Prova	Nota_Participacao	Auxilio_	Financeiro	Necessidade_Esp	ecial Valor_Mensalid	ade P	agou_Mensalidade
2	ALU001		2008-06-10	2023	2023-01	Português		40	86,4	6,9	Não		Nenhuma	786	,42 Si	im
3	ALU001		2008-06-10	2023	2023-01	Matemática		40	75,6	7,3	Não		Nenhuma	786	,42 Si	im
4	ALU001		2008-06-10	2023	2023-01	Ciências Biológicas		88,6	65,1	7,8	Não		Nenhuma	786	,42 Si	im
5	ALU001		2008-06-10	2023	2023-01	Educação Física		93,6	94,4	8,6	Não		Nenhuma	786	,42 Si	im
6	ALU001		2008-06-10	2023	2023-01	Inglês		92,9	72,3	6,7	Não		Nenhuma	786	,42 Si	im
7	ALU001		2008-06-10	2023	2023-01	Estudo Religioso		86,9	82,9	7,3	Não		Nenhuma	786	,42 Si	im
8	ALU002		2009-04-07	2023	2023-01	Português		74,3	63,6	8,3	Não		Nenhuma	810	,43 N	ão
9	ALU002		2009-04-07	2023	2023-01	Matemática		72,7	70,1	9,7	Não		Nenhuma	810	,43 Si	im
10	ALU002		2009-04-07	2023	2023-01	Ciências Biológicas		77,9	65,8	8,3	Não		Nenhuma	810),43 Si	im
11	ALU002		2009-04-07	2023	2023-01	Educação Física		79,1	45	10	Não		Nenhuma	810),43 Si	im
12	ALU002		2009-04-07	2023	2023-01	Inglês		77,5	76,1	9,7	Não		Nenhuma	810	,43 N	ão
13	ALU002		2009-04-07	2023	2023-01	Estudo Religioso		75,5	79,6	10	Não		Nenhuma	810),43 Si	im
14	ALU003		2010-08-06	2023	2023-01	Português		89,4	85,2	6,8	Não		Nenhuma	807	,15 Si	im
15	ALU003		2010-08-06	2023	2023-01	Matemática		92,2	98,7	6,3	Não		Nenhuma	807	,15 Si	im
16	ALU003		2010-08-06	2023	2023-01	Ciências Biológicas		99,1	65	7,2	Não		Nenhuma	807	,15 Si	im
17	ALU003		2010-08-06	2023	2023-01	Educação Física		89,6	79,2	6,4	Não		Nenhuma	807	,15 Si	im
18	ALU003		2010-08-06	2023	2023-01	Inglês		95,1	82,3	6,2	Não		Nenhuma	807	,15 Si	im
19	ALU003		2010-08-06	2023	2023-01	Estudo Religioso		88,9	79,2	5,9	Não		Nenhuma	807	,15 Si	im
20	ALU004		2009-06-22	2023	2023-01	Português		73,9	64,8	6,8	Não		Nenhuma	80	7,9 Si	im
21	ALU004		2009-06-22	2023	2023-01	Matemática		75,5	77,2	8,2	Não		Nenhuma	80	7,9 Si	im
22	ALU004		2009-06-22	2023	2023-01	Ciências Biológicas		78,5	66,9	6,2	Não		Nenhuma	80	17,9 Si	im

Resultados e Visualizações

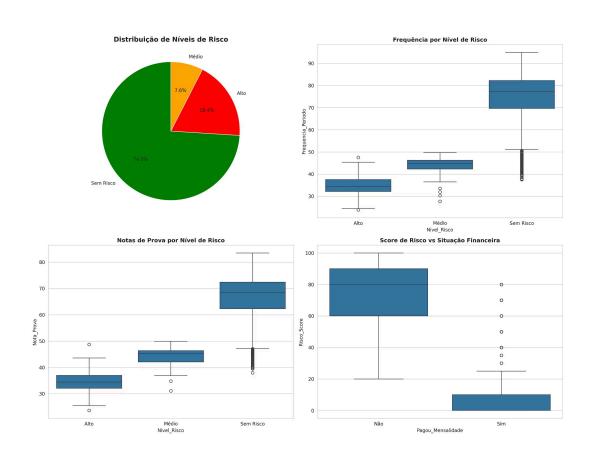
Métricas de Performance do Modelo

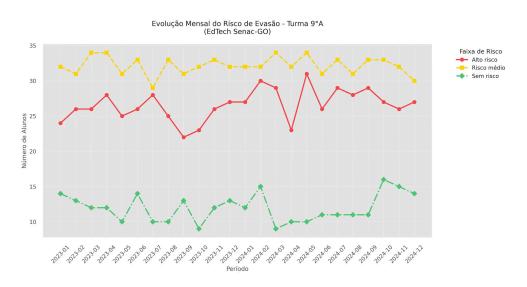
Resultados iniciais demonstram alta precisão na identificação de estudantes em risco.

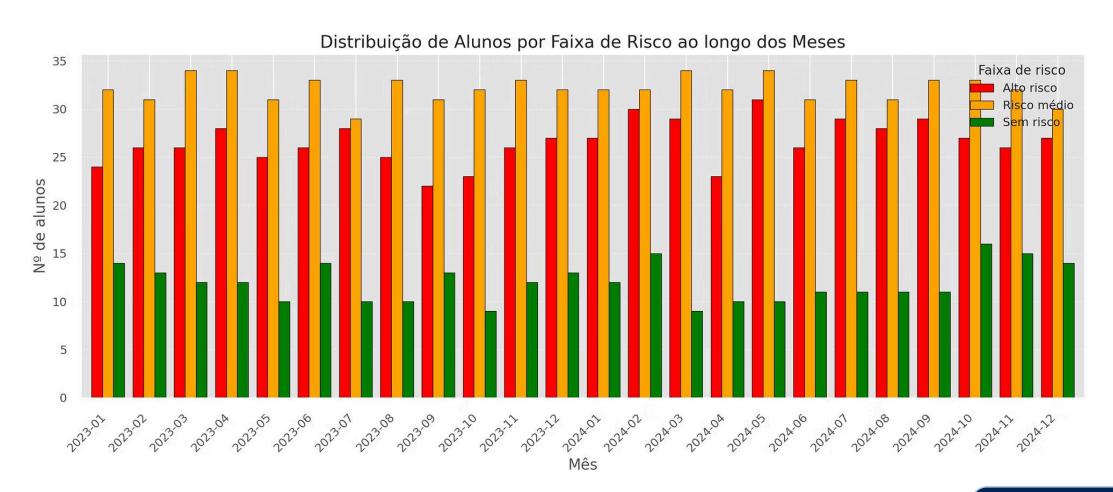
Análises Preditivas

Visualizações claras que permitem aos gestores identificar e agir sobre os casos críticos.

A análise preditiva do nosso protótipo oferece uma visão clara e acionável para a tomada de decisão no ambiente educacional.

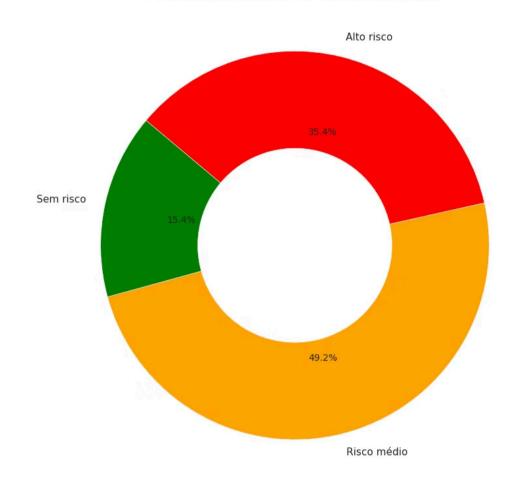


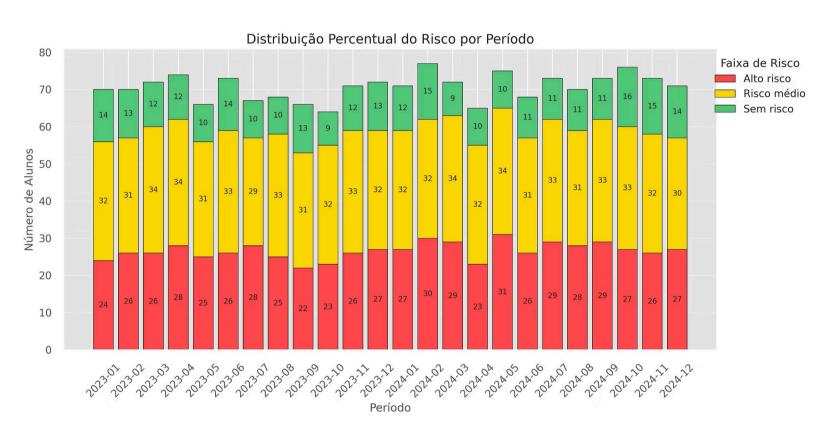


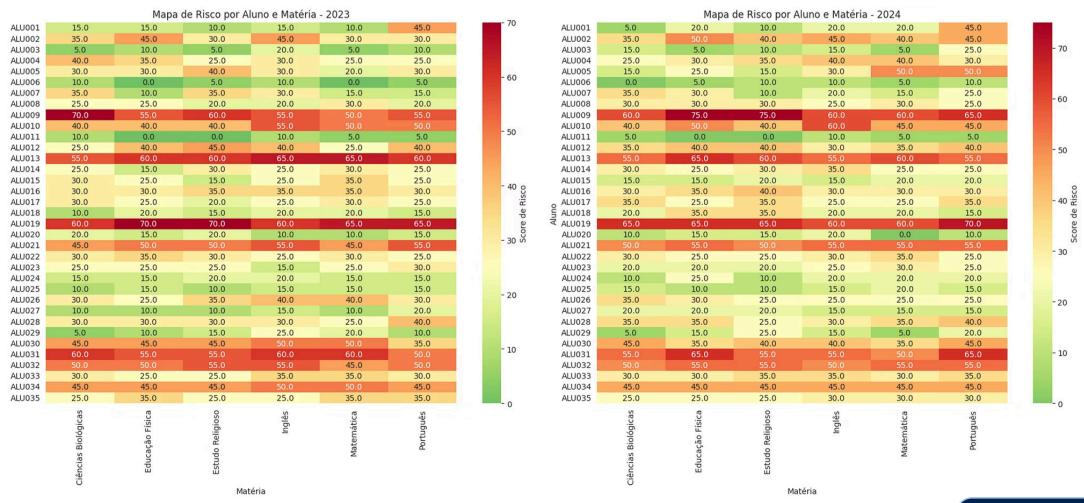


Resultados e Visualizações

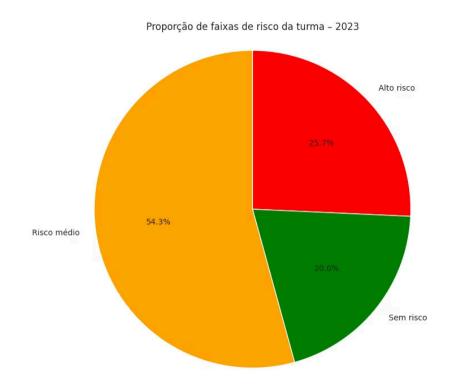
Proporção das Faixas de Risco em 2024-04

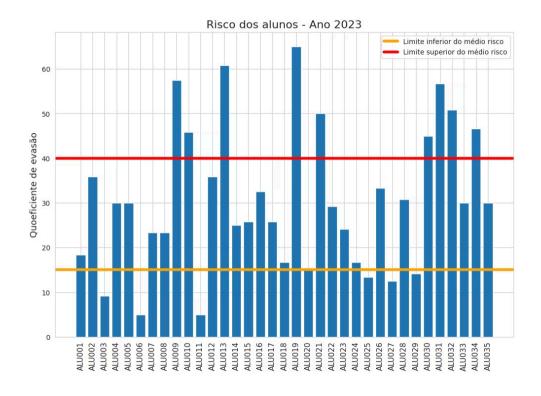






Resultados e Visualizações





Resultados e Visualizações

Link no colab para o arquivo: ED.TECH_Senac_ANALISE PREDITIVA_v.4

https://colab.research.google.com/drive/1-F1ihglaa1mDfuPhesfBc_h4kWzUBENp?usp=sharing

```
■ INICIANDO ANÁLISE DETALHADA COMPLETA...
ANÁLISE COMPLETA GERADA: 420 linhas (Aluno x Matéria x Ano)
✓ Intervenções aplicadas ao dataframe agregado.
• Média intervenções por registro: 9.4
CASOS CRÍTICOS IDENTIFICADOS: 108
ALU009 | Estudo Religioso | 2024
Score: 75.0 | Freq: 77.7 | Nota: 56.27
Fatores: Frequência Baixa, Notas Baixas, Participação Crítica
Intervenções sugeridas (exemplo):
 - academicas: ['www.MONITORIA ACADÊMICA: Acompanhamento semanal com monitor', ' 💡 TÉCNICAS DE ESTUDO: Workshop sobre métodos
 - frequencia: ['ii MONITORAMENTO SEMANAL: Relatório semanal de frequência', 'ii INCENTIVOS À PRESENÇA: Sistema de recompensa
 - participacao: [' 🞮 GAMIFICAÇÃO: Implementar elementos lúdicos nas aulas', ' 🦫 DESENVOLVIMENTO SOCIAL: Workshops de express
 - necessidades_especiais: ['🗷 ADAPTAÇÕES CURRICULARES: Personalização do conteúdo', ' 📏 RECURSOS ASSISTIVOS: Ferramentas te
 - familiares: [' 😌 \u200d 🙆 \u200d 🧟 \u200d 😔 REUNIÕES FAMILIARES: Encontros quinzenais com família', ' 🖩 COMUNICAÇÃO CONSTANI
 - motivacionais: ['🌋 PLANO DE METAS: Estabelecer objetivos alcançáveis', '💭 SESSÕES DE COACHING: Orientação vocacional e m
ALU009 | Educação Física | 2024
Score: 75.0 | Freq: 75.62 | Nota: 59.2
Fatores: Frequência Baixa, Notas Baixas, Participação Crítica
Intervenções sugeridas (exemplo):
 - academicas: ['www.MONITORIA ACADÊMICA: Acompanhamento semanal com monitor', ' 💡 TÉCNICAS DE ESTUDO: Workshop sobre métodos
 - frequencia: ['i MONITORAMENTO SEMANAL: Relatório semanal de frequência', 'i INCENTIVOS À PRESENÇA: Sistema de recompensa
 - participacao: ['Ma GAMIFICAÇÃO: Implementar elementos lúdicos nas aulas', '🖫 DESENVOLVIMENTO SOCIAL: Workshops de express
 - necessidades especiais: ['[Mart ADAPTAÇÕES CURRICULARES: Personalização do conteúdo', ' 📏 RECURSOS ASSISTIVOS: Ferramentas te
 - familiares: ['😌 \u200d 🙆 \u200d 🧟 \u200d 😔 REUNIÕES FAMILIARES: Encontros quinzenais com família', ' 🖩 COMUNICAÇÃO CONSTANI
 - motivacionais: [' 😤 PLANO DE METAS: Estabelecer objetivos alcançáveis', ' 💭 SESSÕES DE COACHING: Orientação vocacional e m
```

Resultados e Visualizações

Nome: LUCAS GABRIEL

Turma: 5° ano B

Telefone:(62) 9 2001-7015

Email: lucasgabriel@gmail.com

Coeficiente de Evasão Português Matemática Inglês Ciências Informática

Causas do coeficiente:

Nota baixa, Participação baixa

Sugestões para melhorar:

Monitoria acadêmica, projetos colaborativos

O FUTURO DA EDUCAÇÃO

Impacto Esperado e Transformação de Vidas

Redução da Evasão

Mais estudantes concluindo suas jornadas educacionais.

Intervenções Personalizadas

Apoio direcionado para cada necessidade.

Gestão Aprimorada

Decisões baseadas em dados e inteligência.

Transformação de Vidas

Oportunidades concretas para jovens como o Lucas.

Nosso protótipo não é apenas uma ferramenta tecnológica, é um catalisador para um futuro onde o potencial de cada estudante pode ser plenamente realizado.

COMO A INTELIGÊNCIA ARTIFICIAL CONTRIBUIRÁ COM O PROJETO?

Análise Preditiva de Risco

- Detecção Precoce de Risco Nossos modelos de IA analisam o histórico acadêmico, frequência, indicadores socioeconômicos e engajamento digital para identificar estudantes com até 85% de precisão que correm risco de evasão;
- **Insights Ocultos** Usando técnicas avançadas de machine learning, nossos modelos treinados revelam correlações surpreendentes, como por exemplo: o impacto do transporte irregular no desempenho em matemática;
- Análise Integrada Processamos simultaneamente dados socioeconômicos, desempenho acadêmico e padrões de frequência para obter uma visão holística de cada estudante;
- Alertas Antecipados Nossos modelos de machine learning identificam estudantes com mais de 70% de risco de evasão até 6
 meses antes do possível abandono, permitindo intervenções precoces;
- Perfis de Risco Algoritmos avançados de classificação, como Random Forest e Regressão Logística, categorizam os alunos de acordo com seus níveis de vulnerabilidade.

COMO A INTELIGÊNCIA ARTIFICIAL CONTRIBUIRÁ COM O PROJETO?

Personalização de Intervenções

- Mapeamento de perfis: Classifica estudantes em categorias como exemplo: "risco econômico" ou "desmotivação pedagógica", direcionando ações específicas;
- Acompanhamento dinâmico: Reavalia riscos mensalmente com dados atualizados;
- Recomendações Adaptativas: Sistema sugere estratégias específicas para cada perfil;
- Plano de Ação Individualizado: Geração automática de roadmaps educacionais baseados em lacunas de aprendizagem detectadas.

COMO A INTELIGÊNCIA ARTIFICIAL CONTRIBUIRÁ COM O PROJETO?

Integração com Gestão Educacional

- Dashboard intuitivo: Visualizações em tempo real (ex.: heatmaps de evasão por região) auxiliam decisões estratégicas;
- Otimização de recursos: Prioriza escolas com maior Índice de Vulnerabilidade Educacional (IVE) para receber programas de apoio;
- Sistema de Notificações: Chatbots educacionais enviam mensagens motivacionais personalizadas via:
 - WhatsApp;
 - Aplicativo móvel próprio;
 - E-mail automatizado;
- Gamificação Adaptativa: Mecânicas de recompensa ajustadas ao perfil comportamental de cada aluno;
- Feedback Loop Automatizado: Modelos que se retroalimentam com dados de efetividade das intervenções;
- Painel de Gestão em Tempo Real: Dashboard interativo com:
 - Taxa de risco atualizada diariamente;
 - Progresso das ações implementadas;
 - Projeções de impacto nas métricas educacionais.

COMO A INTELIGÊNCIA ARTIFICIAL CONTRIBUIRÁ COM O PROJETO?

Aprendizado contínuo do sistema

- Feedback loops atualizam algoritmos com novos dados educacionais e resultados de intervenções;
- Adaptação a contextos locais: Modelo reconhece particularidades de áreas rurais vs. urbanas.

"A IA não substitui educadores, mas potencializa sua capacidade de agir preventivamente".

Dados reais

Insights do Dataset MEC

Dados com mais de 1 milhão de linhas para identificar fatores que influenciam a evasão escolar e construir predições. Trabalhamos com 299 mil linhas.

https://app.powerbi.com/view?

<u>r=eyJrljoiZDhkNGNiYzgtMjQ0My000GVILWJjNzYtZWQwYjl20ThhYWM1</u> <u>liwidCl6ljllNjgyMzU5LWQxMjgtNGVkYi1iYjU4LTgyYjJhMTUzNDBmZiJ9</u>

ightarrow COR/RAÇA ightarrow EIXO TECNOLÓGICO

→ FAIXA ETÁRIA → FONTE DE FINANCIAMENTO

ightarrow IDADE ightarrow RENDA FAMILIAR

ightarrow SEXO ightarrow TURNO

ANÁLISE DE EVASÃO ESCOLAR - DADOS MEC

👔 ANÁLISE DETALHADA DA ESTRUTURA DOS DADOS

Dimensões do dataset: 299999 linhas × 38 colunas

Memória utilizada: 502.39 MB

Made with **GAMMA**

Dados reais

Insights do Dataset MEC

- PARTE 1: ASSOCIAÇÃO COM EVASÃO
- Analisando variáveis categóricas com Cramér's V...
- Analisando variáveis numéricas com Correlação...
- TABELA DE ASSOCIAÇÃO COM EVASÃO:

```
Habilitação
                          Cramér's V
                                                0.156 (p= 0.009)
                         Cramér's V
                                                0.094 (p= 0.000) Muito Fraca
      Turno
                                                  0.084 (p= 0.000) Muito Fraca
      Fonte de Financiamento Cramér's V
      Renda Familiar
                         Cramér's V
                                                0.067 (p= 0.000) Muito Fraca
                         Cramér's V
      Eixo Tecnológico
                                                0.062 (p= 0.000) Muito Fraca
6. H Idade
                         Correlação de Pearson
                                                 0.035 (p= 0.000) V Muito Fraca
7. H Idade
                         Correlação de Pearson
                                                 0.035 (p= 0.000) Muito Fraca
                         Cramér's V
                                                0.023 (p= 0.000) Muito Fraca
     Cor / Raca
                          Cramér's V
                                                0.008 (p= 0.000) Muito Fraca

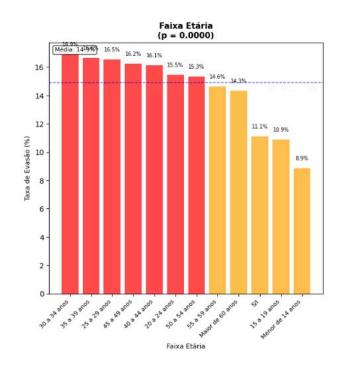
    Sexo
```


Dados reais

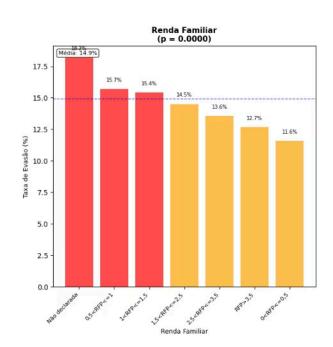
Insights do Dataset MEC

Dados com mais de 1 milhão de linhas para identificar fatores que influenciam a evasão escolar e construir predições. Trabalhamos com 299 mil linhas.

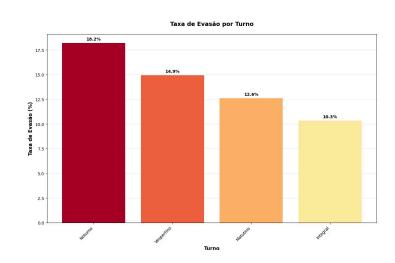
Insights do Dataset MEC



===	Taxa predita Cod Unidade	por ca		ade (top 10) === taxa_predita_pct
19	66.0	1	0.623333	62.333
7	22.0	5	0.289456	28.946
12	42.0	4	0.166667	16.667
5	19.0	1	0.126416	12.642
30	92.0	1	0.108958	10.896
18	65.0	1	0.108925	10.892
21	70.0	4564	0.102099	10.210
28	85.0	6	0.090625	9.063
8	29.0	1	0.074703	7.470
20	67.0	11	0.072012	7.201



Renda Familiar	n	taxa_predita	taxa_predita_pct
Não declarada	1396	0.123491	12.349
0,5 <rfp<=1< td=""><td>795</td><td>0.094483</td><td>9.448</td></rfp<=1<>	795	0.094483	9.448
1,5 <rfp<=2,5< td=""><td>467</td><td>0.093997</td><td>9.400</td></rfp<=2,5<>	467	0.093997	9.400
0 <rfp<=0,5< td=""><td>1284</td><td>0.088903</td><td>8.890</td></rfp<=0,5<>	1284	0.088903	8.890
2,5 <rfp<=3,5< td=""><td>222</td><td>0.084004</td><td>8.400</td></rfp<=3,5<>	222	0.084004	8.400
RFP>3,5	196	0.075371	7.537
1 <rfp<=1,5< td=""><td>639</td><td>0.071008</td><td>7.101</td></rfp<=1,5<>	639	0.071008	7.101



	: Taxa predita	por c	ategoria -> Tu	urno (top 10) ===
	Turno	n	taxa_predita	taxa_predita_pct
3	Noturno	983	0.180700	18.070
4	Vespertino	461	0.149737	14.974
0	Integral	757	0.072016	7.202
1	Matutino	654	0.071655	7.165
2	NA_MISSING	2144	0.063580	6.358

		Eva	adidos
Concluintes	46.9%	14.9%	
		38.2%	Em curso

Distribuição de Situações Todos os Alunos

Estrutura do código

Leitura e preparação do dataset

Carrega o CSV.

Detecta automaticamente os nomes das colunas.

Cria a coluna EVADIDO (binário).

Seleção das features

As colunas serão usadas para prever a evasão:

- -Cor/Raça.
- -Eixo tecnológico.
- Faixa etária.
- Idade.
- Renda familiar.
- Sexo.
- Turno.

Limpeza e transformação

- Idade e Renda → convertidas para numéricas, imputando valores faltantes com a mediana.
- Categóricas → valores nulos viram "NA_MISSING" e categorias muito raras são agrupadas em "OUTROS".
- One-hot encoding → converte categorias em variáveis binárias.
- Padronização → aplica escala em variáveis numéricas (como Idade).

Treinamento dos modelos

Dois modelos são treinados:

- Logistic Regression → modelo mais simples, baseline.
- Random Forest → modelo mais robusto e n\u00e3o linear, geralmente captura melhor rela\u00f3\u00f3es complexas.

Ambos produzem:

- Probabilidades de evasão (predict_proba)
- Previsões binárias (0 = não evadiu, 1 = evadiu).

Avaliação

- Relatórios de classificação (accuracy, precision, recall, F1).
- Matriz de confusão.
- Curva ROC e AUC para comparar os modelos.
- Importância de variáveis (permutation importance no RandomForest).

Predição

- Para cada categoria (ex: cada raça, cada turno, cada faixa etária...), o código faz um agrupamento:
 - n: quantidade de registros naquela categoria.
 - taxa_predita: média da probabilidade de evasão naquela categoria (valor entre 0 e 1).
 - taxa_predita_pct: a mesma taxa, mas em percentual (0–100%).

OBRIGADO!!!

